Hexane, All Isomers

CAS Registry Number:
n-Hexane: 110-54-3
Other 4 Isomers

Prepared by
Bernard J. Kadlebar, M.S.
Jong-Song Lee, Ph.D.
Toxicology Division

Office of Executive Director
TEXAS COMMISSION ON ENVIRONMENTAL QUALITY
Revision History

Revised DSD September 14, 2015: the odor-based value was withdrawn because n-hexane does not have a pungent, disagreeable odor (TCEQ 2015). Proposed revision December 30, 2016: the acute section was updated to include all available acute studies and all available developmental and reproductive studies.
TABLE OF CONTENTS

1. REVISION HISTORY

2. TABLE OF CONTENTS

3. LIST OF TABLES

4. ACRONYMS AND ABBREVIATIONS

5. CHAPTER 1 SUMMARY TABLES

6. CHAPTER 2 MAJOR USES OR SOURCES

7. CHAPTER 3 ACUTE EVALUATION

 7.1 PHYSICAL/CHEMICAL PROPERTIES

 7.2 HEALTH-BASED ACUTE REV AND ESL

 7.2.1 Key Animal Study (Glowa 1991)

 7.2.2 Supporting Studies

 7.2.2.1 Swann et al. (1974) Animal Study

 7.2.2.2 Patty and Yant (1929) Human Study

 7.2.2.3 Rebert and Sorenson (1983, as cited in ATSDR 1999) Animal Study

 7.2.2.4 Other Animal Studies

 7.2.3 Reproductive/Developmental Toxicity Studies

 7.2.3.1 Mast et al. (1987) Animal Study

 7.2.3.2 Mast et al. (1988) Animal Study

 7.2.3.3 Litton Bionetics (1979) Animal Study

 7.2.3.4 Bus et al. (1979) Animal Study

 7.2.3.5 Neeper-Bradley (1989a, b) Animal Studies

 7.2.3.6 Daughtrey et al. (1992, 1994) Two-Generation Reproductive Study

 7.2.4 Mode of Action (MOA) Analysis and Dose Metric

 7.2.5 POD and Critical Effect

 7.2.6 Dosimetric Adjustments

 7.2.6.1 Exposure Duration Adjustments

 7.2.6.2 Default Dosimetry Adjustments from Animal-to-Human Exposure

 7.2.7 Adjustments of the PODREC

 7.2.8 Health-Based 1-h Acute ReV and ESL

 7.3 HEALTH-BASED ACUTE 24-HOUR REV

 7.3.1 Dosimetric Adjustments

 7.3.1.1 Exposure Duration Adjustments

 7.3.1.2 Default Dosimetry Adjustments from Animal-to-Human Exposure

 7.3.2 Adjustments of the PODREC

 7.3.3 Health-Based 24-h Acute ReV

 7.4 WELFARE-BASED ACUTE ESLS

 7.4.1 Odor Perception

 7.4.2 Vegetation Effects

 7.5 SHORT-TERM ESLS AND VALUES FOR AIR MONITORING DATA EVALUATIONS

 7.5.1 n-Hexane

 7.5.2 Other hexane Isomers

 7.6 ACUTE INHALATION OBSERVED ADVERSE EFFECT LEVELS (IOAEFLs)

 CHAPTER 4 CHRONIC EVALUATION

 4.1 PHYSICAL/CHEMICAL PROPERTIES

 4.2 HEALTH-BASED TOXICITY FACTORS
Hexane, All Isomers, proposed
Page iii

4.2.1 Key Studies .. 18
4.2.1.1 Chang et al (1993) Human Study ... 18
4.2.1.2 Miyagaki (1967) Animal Study ... 19
4.2.2 Supporting Studies .. 19
4.2.3 Mode-of-Action (MOA) Analysis and Dose Metric ... 21
4.2.4 Critical Effect and POD ... 21
4.2.5 Dosimetric Adjustments ... 21
4.2.5.1 Exposure Duration Adjustments ... 21
4.2.6 Adjustments of the PODREC ... 22
4.2.7 Health-Based Chronic Rev and chronic ESLnonlinear(nc) 22
4.3 Carcinogenic Potential .. 23
4.4 Welfare-Based Chronic ESL ... 24
4.5 Long-Term ESL and Values for Air Monitoring Data Evaluations 24
4.5.1 n-Hexane .. 24
4.5.2 Other hexane Isomers ... 24
4.6 Chronic Inhalation Observed Adverse Effect Levels (IOAELS) 24

5.1 REFERENCES CITED IN DSD ... 25
5.2 REFERENCES OF OTHER STUDIES REVIEWED BY THE TD 28

APPENDIX DETERMINATION OF CHRONIC PODREC FOR LOAELS 30
A.1 POD for LOAEL from the Chang et al. (1993) Study .. 30
A.1.1 Exposure Duration Adjustments .. 30
A.2 POD for LOAEL from the Miyagaki (1967) Study ... 30
A.2.1 Exposure Duration Adjustments .. 30
A.2.2 Default Dosimetry Adjustments from Animal-to-Human Exposure 30

LIST OF TABLES
Table 1 Air Monitoring Comparison Values (AMCVs) for Ambient Air 1
Table 2 Air Permitting Effects Screening Levels (ESLs) ... 2
Table 3 Chemical and Physical Data ... 3
Table 4 Isomers of Hexane and CAS No. .. 4
Table 5 Summary of Reproductive/Developmental Animal Inhalation Studies 11
Table 6 Summary of 1-h Acute Rev and acute ESL for n-Hexane 14
Table 7. Summary of 24-h Acute Rev .. 16
Table 8 Summary of Supporting Subchronic/Chronic Inhalation Studies of n-Hexane 20
Table 9 Derivation of the Chronic Rev and chronic ESLnonlinear(nc) 23
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronyms and Abbreviations</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMCV</td>
<td>air monitoring comparison value</td>
</tr>
<tr>
<td>deg C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>d</td>
<td>day(s)</td>
</tr>
<tr>
<td>DSD</td>
<td>development support document</td>
</tr>
<tr>
<td>ESL</td>
<td>effects screening level</td>
</tr>
<tr>
<td>acute ESL</td>
<td>acute health-based effects screening level for chemicals meeting minimum database requirements</td>
</tr>
<tr>
<td>$\text{acute ESL}_{\text{odor}}$</td>
<td>acute odor-based effects screening level</td>
</tr>
<tr>
<td>$\text{acute ESL}_{\text{veg}}$</td>
<td>acute vegetation-based effects screening level</td>
</tr>
<tr>
<td>$\text{chronic ESL}_{\text{generic}}$</td>
<td>chronic health-based effects screening level for chemicals not meeting minimum database requirements</td>
</tr>
<tr>
<td>$\text{chronic ESL}_{\text{threshold(c)}}$</td>
<td>chronic health-based Effects Screening Level for threshold dose response cancer effect</td>
</tr>
<tr>
<td>$\text{chronic ESL}_{\text{threshold(nc)}}$</td>
<td>chronic health-based Effects Screening Level for threshold dose response noncancer effects</td>
</tr>
<tr>
<td>$\text{chronic ESL}_{\text{nonthreshold(c)}}$</td>
<td>chronic health-based Effects Screening Level for nonthreshold dose response cancer effects</td>
</tr>
<tr>
<td>$\text{chronic ESL}_{\text{nonthreshold(nc)}}$</td>
<td>chronic health-based Effects Screening Level for nonthreshold dose response noncancer effects</td>
</tr>
<tr>
<td>$\text{chronic ESL}_{\text{veg}}$</td>
<td>chronic vegetation-based effects screening level</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>$H_{b/g}$</td>
<td>blood:gas partition coefficient</td>
</tr>
<tr>
<td>$(H_{b/g})_{A}$</td>
<td>blood:gas partition coefficient, animal</td>
</tr>
<tr>
<td>$(H_{b/g})_{H}$</td>
<td>blood:gas partition coefficient, human</td>
</tr>
<tr>
<td>mm Hg</td>
<td>millimeters of mercury</td>
</tr>
<tr>
<td>HEC</td>
<td>human equivalent concentration</td>
</tr>
<tr>
<td>Acronyms and Abbreviations</td>
<td>Definition</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>HQ</td>
<td>hazard quotient</td>
</tr>
<tr>
<td>HSDB</td>
<td>Hazardous Substance Data Bank</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research on Cancer</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>LOAEL</td>
<td>lowest-observed-adverse-effect-level</td>
</tr>
<tr>
<td>MW</td>
<td>molecular weight</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>µg/m³</td>
<td>micrograms per cubic meter of air</td>
</tr>
<tr>
<td>mg</td>
<td>milligrams</td>
</tr>
<tr>
<td>mg/m³</td>
<td>milligrams per cubic meter of air</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>MOA</td>
<td>mode of action</td>
</tr>
<tr>
<td>NOAEL</td>
<td>no-observed-adverse-effect-level</td>
</tr>
<tr>
<td>OECD</td>
<td>Organization for Economic Cooperation and Development</td>
</tr>
<tr>
<td>POD</td>
<td>point of departure</td>
</tr>
<tr>
<td>POD<sub>ADJ</sub></td>
<td>point of departure adjusted for exposure duration</td>
</tr>
<tr>
<td>POD<sub>HEC</sub></td>
<td>point of departure adjusted for human equivalent concentration</td>
</tr>
<tr>
<td>ppb</td>
<td>parts per billion</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>ReV</td>
<td>reference value</td>
</tr>
<tr>
<td>RGDR</td>
<td>regional gas dose ratio</td>
</tr>
<tr>
<td>SD</td>
<td>Sprague-Dawley rats</td>
</tr>
<tr>
<td>TCEQ</td>
<td>Texas Commission on Environmental Quality</td>
</tr>
<tr>
<td>TD</td>
<td>Toxicology Division</td>
</tr>
<tr>
<td>UF</td>
<td>uncertainty factor</td>
</tr>
<tr>
<td>UF<sub>H</sub></td>
<td>interindivdual or intraspecies human uncertainty factor</td>
</tr>
<tr>
<td>Acronyms and Abbreviations</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>UFₐ</td>
<td>animal to human uncertainty factor</td>
</tr>
<tr>
<td>UFₜₜₗ</td>
<td>subchronic to chronic exposure uncertainty factor</td>
</tr>
<tr>
<td>UFₗₜₗ</td>
<td>LOAEL to NOAEL uncertainty factor</td>
</tr>
<tr>
<td>UFₜ</td>
<td>incomplete database uncertainty factor</td>
</tr>
<tr>
<td>USEPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
</tbody>
</table>
Hexane, All Isomers, proposed
Page 1

Chapter 1 Summary Tables

Table 1 for air monitoring and Table 2 for air permitting provide a summary of health- and welfare-based values from an acute and chronic evaluation of n-hexane and all isomers. Please refer to Section 1.6.2 of the *TCEQ Guidelines to Develop Toxicity Factors* (TCEQ 2015a) for an explanation of reference values (ReVs) and effects screening levels (ESLs) used for review of ambient air monitoring data and air permitting. Table 3 provides summary information on physical/chemical data for n-hexane).

Table 1 Air Monitoring Comparison Values (AMCVs) for Ambient Air

<table>
<thead>
<tr>
<th>Short-Term Values</th>
<th>Concentration</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute ReV [1-h]</td>
<td>19,000 µg/m³ (5,500 ppb)</td>
<td>Critical Effect: Neuroendocrine effects in rats</td>
</tr>
<tr>
<td></td>
<td>1-h Short-Term Health for n-hexane and 4 isomers</td>
<td></td>
</tr>
<tr>
<td>Acute ReV [24-h]</td>
<td>19,000 µg/m³ (5,500 ppb)</td>
<td>Critical Effect: Reduction in fetal body weight in rats</td>
</tr>
<tr>
<td></td>
<td>24-h Short-Term Health for n-hexane and 4 isomers</td>
<td></td>
</tr>
<tr>
<td>acute ESLodor</td>
<td>---</td>
<td>Gasoline-like odor, not pungent or disagreeable</td>
</tr>
<tr>
<td>acute ESLveg</td>
<td>---</td>
<td>No data found</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Long-Term Values</th>
<th>Concentration</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic ReV</td>
<td>670 µg/m³ (190 ppb)</td>
<td>Critical Effect: Peripheral neuropathy in occupational workers from an offset printing factory</td>
</tr>
<tr>
<td></td>
<td>Long-Term Health for n-hexane and 4 isomers</td>
<td></td>
</tr>
<tr>
<td>chronic ESLnonthreshold(c)</td>
<td>---</td>
<td>Data are inadequate for an assessment of human carcinogenic potential</td>
</tr>
<tr>
<td>chronic ESLthreshold(c)</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>chronic ESLveg</td>
<td>---</td>
<td>No data found</td>
</tr>
</tbody>
</table>
Table 2 Air Permitting Effects Screening Levels (ESLs)

<table>
<thead>
<tr>
<th>Short-Term Values</th>
<th>Concentration</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>acute(ESL [1 h])</td>
<td>5,600 µg/m³ (1,600 ppb)<sup>a</sup></td>
<td>Critical Effect: Neuroendocrine effects in rats</td>
</tr>
<tr>
<td>(HQ = 0.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acute(ESL<sub>odor</sub>)</td>
<td>---</td>
<td>Gasoline-like odor, not pungent or disagreeable</td>
</tr>
<tr>
<td>acute(ESL<sub>veg</sub>)</td>
<td>---</td>
<td>No data found</td>
</tr>
<tr>
<td>Long-Term Values</td>
<td>Concentration</td>
<td>Notes</td>
</tr>
<tr>
<td>chronic(ESL-threshold(nc))</td>
<td>200 µg/m³ (57 ppb)<sup>b</sup></td>
<td>Critical Effect: Peripheral neuropathy in occupational workers from an offset printing factory</td>
</tr>
<tr>
<td>(HQ = 0.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chronic(ESL-nomthreshold(c))</td>
<td>---</td>
<td>Inadequate information to assess carcinogenic potential</td>
</tr>
<tr>
<td>chronic(ESL-threshold(c))</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>chronic(ESL<sub>veg</sub>)</td>
<td>---</td>
<td>No data found</td>
</tr>
</tbody>
</table>

^a Based on the acute ReV of 5,500 ppb multiplied by 0.3 to account for cumulative and aggregate risk during the air permit review.

^b Based on the chronic ReV of 190 ppb multiplied by 0.3 to account for cumulative and aggregate risk during the air permit review.
Table 3 Chemical and Physical Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Formula</td>
<td>C<sub>6</sub>H<sub>14</sub></td>
<td>Chemfinder 2004</td>
</tr>
<tr>
<td>Chemical Structure</td>
<td></td>
<td>ChemSpider</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>86.1766</td>
<td>TRRP 2006</td>
</tr>
<tr>
<td>Physical State</td>
<td>Liquid</td>
<td>TRRP 2006</td>
</tr>
<tr>
<td>Color</td>
<td>Colorless</td>
<td>Chemfinder 2004</td>
</tr>
<tr>
<td>Odor</td>
<td>Gasoline type</td>
<td>Chemfinder 2004</td>
</tr>
<tr>
<td>CAS Registry Number</td>
<td>110-54-3</td>
<td>TRRP 2006</td>
</tr>
<tr>
<td>Synonyms</td>
<td>n-Hexane, Hexane/mixed isomers, Hexanes, dipropyl, gettysolve-b, Hex, Hexyl hydride, Normal hexane, skellysolve B</td>
<td>Chemfinder 2004</td>
</tr>
<tr>
<td>Solubility in water, mg/L</td>
<td>13.0 mg/L</td>
<td>TRRP 2006</td>
</tr>
<tr>
<td>Log P<sub>ow</sub> or K<sub>ow</sub></td>
<td>3.9</td>
<td>Chemfinder 2004</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td>153 mm Hg at 25°C</td>
<td>HSDB 2005</td>
</tr>
<tr>
<td>Relative Vapor Density</td>
<td>0.2 cm<sup>2</sup>/s</td>
<td>TRRP 2006</td>
</tr>
<tr>
<td>Density</td>
<td>0.67 at 25°C</td>
<td>HSDB 2005</td>
</tr>
<tr>
<td>Melting Point</td>
<td>-95°C to -100°C</td>
<td>Chemfinder 2004</td>
</tr>
<tr>
<td>Boiling Point</td>
<td>69°C</td>
<td>Chemfinder 2004</td>
</tr>
<tr>
<td>Conversion Factors</td>
<td>1 µg/m<sup>3</sup> = 0.284 ppb</td>
<td>Toxicology Division</td>
</tr>
<tr>
<td></td>
<td>1 ppb = 3.52 µg/m<sup>3</sup></td>
<td></td>
</tr>
</tbody>
</table>
Hexane, All Isomers, proposed
Page 4

Chapter 2 Major Uses or Sources

n-Hexane and other isomers (hexanes) are all colorless volatile liquids at room temperature, odorless when pure, low solubility in water, and with boiling points between 50 and 70 °C. Hexanes are used in the formulation of glue for shoes, leather products, and roofing. There are 5 isomers of hexane including n-hexane, 2- and 3-methylpentane, 2,2- and 2,3-dimethylbutane (Table 4).

Table 4 Isomers of Hexane and CAS No.

<table>
<thead>
<tr>
<th>Isomer Name</th>
<th>CAS No.</th>
<th>Chemical Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-hexane</td>
<td>110-54-3</td>
<td></td>
</tr>
<tr>
<td>2-methylpentane</td>
<td>107-83-5</td>
<td></td>
</tr>
<tr>
<td>3-methylpentane</td>
<td>96-14-0</td>
<td></td>
</tr>
<tr>
<td>2,3-dimethylbutane</td>
<td>79-29-8</td>
<td></td>
</tr>
<tr>
<td>2,2-dimethylbutane</td>
<td>75-83-2</td>
<td></td>
</tr>
</tbody>
</table>

n-Hexane (hexane) is a solvent that has many uses in the chemical and food industries, either in pure form or as a component of the commercial hexane mixture. Highly purified hexane is primarily used as a reagent for chemical or chromatographic separations. Commercial hexane is a mixture that contains approximately 52% hexane; the remaining balance is made up of varying amounts of structural isomers and related chemicals, such as methylpentane and methycyclopentane. Mixtures containing hexane are also used in the extraction of edible fats and oils in the food industry, as cleaning agents in textile and furniture manufacturing, and in the printing industry. Hexane is the solvent base for many commercial products, such as glues, cements, paint thinners, and degreasers. The chemical is a minor constituent of crude oil and
natural gas and, therefore, represents a variable proportion of different petroleum distillates. For example, hexane comprises about 11.6% of unleaded gasoline and about 2% of JP-4 aviation fuel (ATSDR, 1993b, 1999, USEPA 2005).

The most probable route of human exposure to hexane is by inhalation. Individuals are most likely to be exposed to hexane in the workplace; however, monitoring data indicate that hexane is a widely occurring atmospheric pollutant. Exposure from contact with vapors or emissions from heating and motor fuels refined from petroleum products is the most widespread form of low-level exposure for the general population. Most hexane in these fuels is oxidized, or destroyed, as part of the combustion process to provide heat or drive internal combustion engines. Small amounts of hexane, along with other petroleum compounds, volatilize to the atmosphere during handling, storage in fuel tanks, or through incomplete combustion. Recent research suggests that certain fungi may be able to produce hexane. These fungi may be common in older buildings, and in some parts of the country may provide exposures from previously unsuspected indoor sources (ATSDR 1993a, 1999, NSC 2003).

In Texas, the highest reported 1-hour (h) concentration (from 1996 through 2016) of n-hexane was 380.2 ppb collected from an automated gas chromatograph (AutoGC) sample at an ambient air monitoring site at the Decatur Thompson monitoring site in Dallas in 2013. The highest represented annual concentration of n-hexane was 1.4 ppb measured at the Clinton monitoring site in Houston in 1998. The highest 24-h n-hexane value collected from a canister sample from 1995 to 2015 was 690.7 ppb at the Beaumont Downtown monitor in 1996. The highest represented annual concentration of n-hexane was 13.4 ppb measured at the Beaumont Downtown in 1996.

Chapter 3 Acute Evaluation

3.1 Physical/Chemical Properties

The main chemical and physical properties of n-hexane are summarized in Table 3. Chemical and physical properties for other hexane isomers are similar to n-hexane.

3.2 Health-Based Acute Rev and ESL

Inhalation of n-hexane usually causes eye, nose, throat and respiratory irritation, which are rapidly reversible when exposure is discontinued. Acute effects are considered similar to that of other saturated aliphatic hydrocarbons of similar length (C3-C8 alkanes) (EU 2003). However, there is a direct relationship between aliphatic carbon chain length and the potency of alkanes for effects such as lethality, anesthetic activity, physiological response, respiratory irritation, and neurological toxicity (i.e., as chain length increases up to C10, toxicity increases) (Patty and Yant 1929, Gloya 1991, Swann et al. 1974, Lammers et al. 2011). One reason is, as carbon chain length of alkanes increases and the potency increases, the higher number of carbon atoms in aliphatic hydrocarbons have higher uptake rates (Dahl et al. 1988, McKee et al. 2006, Lammers
Hexane, All Isomers, proposed

Page 6

et al. 2011). Furthermore, elimination of low-molecular-weight hydrocarbons is predominantly by exhalation and very rapid whereas elimination of molecules of greater molecular weights is more likely to involve metabolism and urinary excretion, increasing elimination half times from a few minutes (min) to approximately 2 h (Lammers et al. 2011). Studies of the comparative inhalation toxicities of the saturated hydrocarbons showed that straight-chain alkanes are more toxic than their branched isomers (Lazarew 1929, as cited in Carreón T. 2005).

3.2.1 Key Animal Study (Glowa 1991)

Glowa (1991) examined the ability of individual n-alkanes (C₅-C₈) including n-hexane to impair performance (neurobehavioral effects) and to stimulate the hypothalamic-pituitary-adrenal (HPA) axis (neuroendocrine effects) in adult male CD-1 mice (35-40 grams).

For neurobehavioral effects assessment, impaired performance was assessed by studying operant response maintained under a fixed interval 60-second schedule of milk presentation. In the presence of flashing green lights, the first response to occur after the elapse of a 60-second interval produced milk. Eight mice were studied. Individual concentration-effect functions were obtained by comparing pre-exposure (control) levels of response to response after 30-min of exposure of incrementally increased hexane concentrations. Recovery was determined 30 min following removal from exposure. Concentration was increased from 100 ppm (nominal concentrations) until the response was abolished. The results showed that concentrations less than 3,000 ppm had no effect. Concentrations of 5,600 ppm n-hexane decreased the rate of response in a concentration-related manner with decreased rate of response of slightly less than 50% at 5,600 ppm, about 80% at 8,000 ppm, and completely abolishing it (100%) at 17,000 ppm. Response recovered fully 30 min following ceasing exposure to 17,000 ppm n-hexane. Mean concentrations (± standard deviation) resulting in a 50% and 10% rate of response-decreasing potency (EC₅₀ and EC₁₀) were 7,051 ± 3,138 and 4,537 ± 3,490 ppm, respectively. The level of 3,000 and 4,537 ppm (EC₁₀) can be considered a 30-min no-observed-adverse-effect-level (NOAEL) and minimal lowest-observed-adverse-effect-level (NOAEL), respectively, for transient behavioral impairment.

For neuroendocrine effects assessment, the effect on HPA axis activation was studied by measuring adrenocortocotropin (ACTH) levels following exposure of mice (6 mice per concentration) to n-hexane (100 to 10,000 ppm) for 30 min. Immediately after exposure ceased, animals were sacrificed and the ACTH levels in serum were measured. ACTH levels were the same from 100 to 1,000 ppm compared to the control. ACTH levels increased sharply approximately 1,400% and 1,700% of control at 3,000 and 10,000 ppm, respectively. The levels of 1,000 and 3,000 ppm may be considered a 30-min NOAEL and LOAEL, respectively, for HPA activation. However, no statistical analyses were performed and thus, statistical significance is unknown. Without knowing the biological significance of the neuroendocrine effects as measured by HPA activation, or the statistical significance of the effects, we could not determine if the effects were adverse. Nevertheless, the 30-min NOAEL of 1,000 ppm for
Hexane, All Isomers, proposed

neuroendocrine effects was conservatively used as point of departure (POD) to develop the 1-h acute ReV for n-hexane.

3.2.2 Supporting Studies

3.2.2.1 Swann et al. (1974) Animal Study

Swann et al. (1974) studied the respiratory tract irritation properties of n-hexane in male Swiss mice (25 g). Four animals were exposed head-only for 5 min at each of the following concentrations of n-hexane: 1,000, 2,000, 4,000, 8,000, 16,000, 32,000, and 64,000 ppm (nominal concentrations). The respiratory rate, depth, and configuration were counted and recorded for 15-second intervals while the animals were inhaling n-hexane. Concentrations up to 8,000 ppm produced no anesthesia. At 16,000 ppm, mice experienced some periodic body movement during exposure. Some slight anesthesia occurred during the recovery period. At 32,000 ppm, mice experienced respiratory irregularity during exposure with deeper anesthesia and increased expiratory effect. At 64,000 ppm, all mice stopped breathing within 4.5 min of the onset of exposure. A NOAEL and LOAEL of 8,000 and 16,000 ppm, respectively, for irritation were identified from this study. Since the exposure duration was only 5 min, the NOAEL was not used as a POD to develop the acute toxicity values.

3.2.2.2 Patty and Yant (1929) Human Study

In a human inhalation study, no symptoms were experienced by three to six volunteers exposed to 2,000 ppm hexane for 10 min, but dizziness and a sense of giddiness were experienced at 5,000 ppm (Patty and Yant 1929). This study is rather dated and focused on a limited number of parameters to examine the warning properties of C₃-C₇ alkanes, evaluated only 3-6 subjects, study results were not well reported, and exposure was for only 10 min. Thus, the NOAEL of 2,000 ppm identified from this study was not used as the POD to derive the acute ReV and acute ESL for n-hexane.

3.2.2.3 Rebert and Sorenson (1983, as cited in ATSDR 1999) Animal Study

In a subacute study by Rebert and Sorenson (1983, as cited in ATSDR 1999), the body weights of male Fischer 344 rats exposed to 1,500 ppm n-hexane 24 h/day (d), 5 d/week were 11% below those of control rats within 2 weeks. Statistical significance was not reported. The level of 1,500 ppm can be considered a free-standing LOAEL for decrease in body weight gain. Since the study was for subacute exposure (24 h/d), even if a 1-h LOAEL adjusted from a single 24-h exposure were deemed appropriate in this case (the duration of actual exposure was > 100 h), the LOAEL from this subacute study would be much higher so was not used as POD to develop the acute ReV.

3.2.2.4 Other Animal Studies

In another study, a NOAEL of 500 ppm was reported after a 5-min inhalation exposure in an unidentified test species (Wayne and Orcutt 1960). Iba and Bird (2007) reported that rats
exposed to 1,000 ppm for 6 h experienced no adverse health effects when compared to other
treatment groups. This study did not clearly identify a NOAEL for hexane exposure as the
purpose of the study was to examine the effects of co-exposure of rats to hexane and the 1,3-
butadiene metabolite, 3-butene-1,2-diol. However, the findings of the Iba and Bird (2007) study
add further evidence to the relatively nontoxic nature of hexane. The NOAEL is likely to be at
least 1,000 ppm for exposure to hexane alone.

3.2.3 Reproductive/Developmental Toxicity Studies

No information is available on the reproductive or developmental effects of hexane in humans.
Several animal reproductive/developmental animal studies are available but the results (both
NOAELs and LOAELs) vary considerably. Most studies (Mast et al. 1988, Litton Bionetics
1979, Bus et al.1979, Neeper-Bradley (1989a,b)), however, do not indicate that n-hexane
exposure produces adverse reproductive/developmental effects. While the USEPA indicates that
the results of the Mast et al. (1987) rat study were questionable, the level of 1,000 ppm was
conservatively considered a minimal LOAEL for reduction in fetal body weight identified in this
study.

3.2.3.1 Mast et al. (1987) Animal Study

In an animal study, pregnant Sprague-Dawley (SD) rats (30/group) were exposed to 0, 200,
1,000, or 5,000 ppm n-hexane by inhalation for 20 h/d over gestation (GD) 6-19 for rats (Mast et
al. 1987, as cited in NTP 1991 and ATSDR 1999). Maternal toxicity (reduced maternal extra-
gestational weight gain) was statistically significant only for the 5,000 ppm exposure group. A
NOAEL and LOAEL of 1,000 and 5,000 ppm, respectively, for maternal toxicity was identified.
No major abnormalities were seen in any of the fetuses. A statistically significant increased
incidence of reduced skeletal ossification of sternebrae 1-4 was observed at 5,000 ppm, and the
increase was positively correlated with increasing exposure concentration. No significant
differences were observed in intrauterine death rate, or in the incidence of fetal malformations. A
statistically significant reduction in fetal body weight relative to controls was observed for males
at the 1,000 and 5,000 ppm exposure levels (7 and 15% reduction, respectively). Female fetal
body weights were also reduced with respect to controls at the 1,000 and 5,000 ppm exposure
levels (3 and 14% reduction, respectively), but the reduction was only statistically significant for
the 5,000 ppm group. A NOAEL and LOAEL of 200 and 1,000 ppm for decreases in fetal body
weights were identified from this study.

USEPA (2005), however, indicated that the range between the NOAEL and LOAEL is
considerable. Further, the USEPA indicates that several additional studies (Mast et al. 1988,
Litton Bionetics 1979, Bus et al.1979, Neeper-Bradley 1989a,b) do not indicate that n-hexane
exposure produces adverse reproductive/developmental effects. The USEPA indicated that the
NOAEL and LOAEL for decreased fetal body weights identified from the Mast et al. (1987)
study are questionable. Nevertheless, according to the TCEQ Guidelines (2015a), the statistically
significant reduction in fetal body weight (7%) relative to controls observed for males at 1,000
Hexane, All Isomers, proposed
Page 9

ppm was considered minimal adverse effect as the reduction in fetal body weight was > 5%.
Since the minimal LOAEL of 1,000 ppm was conducted for 20 h/d and based on a
developmental effect, it was not used to derive 1-h acute ReV. However, it was used as POD to
derive the 24-h ReV for the evaluation of ambient air monitoring data (Section 3.3).

3.2.3.2 Mast et al. (1988) Animal Study
Groups of 35 pregnant Swiss mice were exposed to n-hexane for 20 h/d during GD 6-17 at 0,
200, 1,000, and 5,000 ppm (Mast et al. 1988, as cited in ATSDR 1999). Maternal body weight
was significantly reduced (6%) at 5,000 ppm, and this was accompanied by a decrease in mean
gravid uterine weight. There was no effect on body weight in a group of 10 non-pregnant mice
co-exposed to n-hexane at 5,000 ppm in this experiment. The mean ratio of uterine weight to
extra-gestational weight gain for all treatment groups was less than for the controls and this
difference was statistically significant for the 5,000 ppm group. The number of live fetuses per
litter was significantly reduced at 5,000 ppm, with a significant concentration-dependent trend.
The number of resorptions per litter was significantly increased at 200 ppm, but not at higher
concentrations. Fetal weights (male and female combined) were slightly, but not significantly,
reduced for all treatment groups compared to controls. However, the decrease was significantly
correlated to increasing n-hexane concentration. Male fetal weights for n-hexane exposure
groups were not significantly affected compared to controls, but female fetal weights were
significantly reduced for the 5,000 ppm group compared to controls. There was no increased
incidence of malformations or variations in any group exposed to n-hexane. The level of 1,000
and 5,000 ppm can be considered the reproductive/developmental NOAEL and LOAEL,
respectively (e.g., number of live fetuses per litter, decreased female fetal body weight).

3.2.3.3 Litton Bionetics (1979) Animal Study
In a developmental study where pregnant SD rats were exposed to n-hexane concentrations of 0,
93, and 409 ppm for 6 h/d over GD 6-15, no effects on body weight of the dams were observed
(Litton Bionetics 1979, as cited in ATSDR 1999). No effects on body weight of the dams and no
statistically significant difference in skeletal abnormalities between control and treated groups
were observed. All animals were normal in appearance throughout the study. The level of 409
ppm was a free-standing NOAEL for developmental effects.

3.2.3.4 Bus et al. (1979) Animal Study
Pregnant Fischer 344 rats (7/group) were exposed to 0 or 1,000 ppm n-hexane for 6 h/d during
GD 8-12, 12-16, or 8-16 (Bus et al. 1979). No significant alterations in fetal resorptions, body
weights, visible anomalies, or the incidence of soft tissue and skeletal anomalies were noted in
any of the treatment groups. A temporary decrease in pup weight gain was seen in the offspring
from dams exposed during GD 8-16. A low, nonsignificant incidence of misaligned fourth
sternebrae was noted in each of the treatment groups. The level of 1,000 was a free-standing
NOAEL.
3.2.3.5 *Neeper-Bradley (1989a,b) Animal Studies*

In a study by Neeper-Bradley (1989a,b, as cited in ATSDR 1999), groups of pregnant SD rats (n=25/group) and CD-1 mice (30/group) were exposed to commercial hexane (contains 53.4% n-hexane, unspecified hydrocarbons for the remaining) vapor at 0, 914, 3,026, and 9,017 ppm for 6 h/d on GD 6-15. No significant differences between groups were observed in rats for the number of viable implantations per litter, number of nonviable implantations per litter, sex ratio, fetal body weights (total, male and female), incidence of variations by category, incidence of individual or pooled external, visceral or skeletal malformations or total malformations, or of total variations. Maternal toxicity (reduced weight gain) was observed in rats at 3,026 and 9,017 ppm, but total weight gain throughout pregnancy was unaffected by exposure. The authors concluded that exposure to commercial hexane vapor by inhalation during organogenesis in SD rats resulted in maternal toxicity at 3,026 and 9,017 ppm, with no apparent developmental toxicity at any level.

In mice, a significantly increased incidence of poor ossification was observed at 2 of the 84 sites examined (bilateral bone island at the first lumbar arch and all intermediate phalanges of the hindlimb unossified) in the 9,017 ppm group. Slight maternal toxicity (color changes in the lungs at necropsy) was also observed in mice at 3,026 and 9,017 ppm. The authors concluded that exposure to commercial hexane vapor by inhalation during organogenesis in the CD-1 mouse resulted in slight maternal toxicity at 3,026 and 9,017 ppm and slight developmental toxicity (poor ossification in the absence of malformations) at 9,017 ppm. A NOAEL and LOAEL of 914 and 3,026 ppm, respectively, for maternal toxicity and a NOAEL and LOAEL of 3,026 and 9,017 ppm, respectively, for developmental effects were identified from this study.

3.2.3.6 *Daughtrey et al. (1992, 1994) Two-Generation Reproductive Study*

In a two-generation reproductive study (Daughtrey et al. 1992), male and female SD rats (25/sex/group) were exposed to commercial hexane (contains 53% n-hexane, 16% 3-methylpentane, 14% methylcyclopentane, and 12% 2-methyl pentane) vapor at target concentrations of 0, 900, 3,000, or 9,000 ppm for 6 h/d, 5 d/week, over two generations. At both the F0 breed to produce F1 litters and the F1 breed to produce F2 litters, reproductive parameters were unaffected. Litter size and postnatal survival were not significantly different between exposure groups. However, reductions in body weight and body weight gain were observed in both F1 and F2 litters exposed to 9,000 ppm. Effects on body weight were not observed in offspring exposed to the 900 or 3,000 ppm. Histopathologic examination of selected organs revealed hyaline droplet nephropathy in adult F0 and F1 males exposed to 9,000 ppm. No other treatment related lesions were observed. A NOAEL and LOAEL of 3,000 and 9,000 ppm for reduction in body weight and body weight gain, and a free-standing NOAEL of 9,000 ppm for reproductive effects were identified from this study.

3.2.3.7 Summary of Reproductive/Developmental Studies

The results of these animal reproductive/developmental studies are summarized in Table 5.
Summary of Reproductive/Developmental Animal Inhalation Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Animal Strain</th>
<th>Exposure Duration</th>
<th>Exposure Concentration</th>
<th>NOAEL</th>
<th>LOAEL(^a)</th>
<th>Response at LOAEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mast et al. (1987)</td>
<td>Pregnant SD rats (30/group)</td>
<td>20 h/d over GD 6-19</td>
<td>0, 200, 1,000, or 5,000 ppm</td>
<td>1,000 ppm</td>
<td>5,000 ppm</td>
<td>Maternal toxicity (reduced in extra-gestational maternal weight gain in dams)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200 ppm</td>
<td>1,000 ppm(^b) (minimal)</td>
<td>Reduced in fetal body weight (7%) in males</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,000 ppm</td>
<td>5,000 ppm</td>
<td>Reduced in fetal body weight (14%) in females</td>
</tr>
<tr>
<td>Mast et al. (1988)</td>
<td>Pregnant Swiss mice</td>
<td>20 h/d over GD 6-17</td>
<td>0, 200, 1,000, or 5,000 ppm</td>
<td>1,000 ppm</td>
<td>5,000 ppm</td>
<td>Reduced in number of live fetuses per litter; and fetal body weight in females</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,000 ppm</td>
<td>---</td>
<td>Absence of reduced in fetal body weight in males</td>
</tr>
<tr>
<td>Litton Bionetics 1979</td>
<td>Pregnant SD rats (155-188/group)</td>
<td>6 h/d over GD 6-15</td>
<td>0, 93, and 409 ppm</td>
<td>409 ppm</td>
<td>---</td>
<td>Absence of maternal toxicity and developmental effect</td>
</tr>
<tr>
<td>Bus et al. 1979</td>
<td>Fischer 344 rats (7/group)</td>
<td>6 h/d over GD 8-12, 12-16, or 8-16</td>
<td>0, or 1,000 ppm</td>
<td>1,000 ppm</td>
<td>---</td>
<td>Absence of maternal toxicity and developmental effect</td>
</tr>
<tr>
<td>Neeper-Bradley (1989a)</td>
<td>Pregnant SD rats (25/group)</td>
<td>6 h/d on GD 6-15</td>
<td>0, 914, 3,026, and 9,017 ppm of commercial hexane</td>
<td>914 ppm</td>
<td>3,026 ppm</td>
<td>Slight maternal toxicity (reduced weight gain in dams) in mice</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9,017 ppm</td>
<td>---</td>
<td>Absence of developmental effect</td>
</tr>
<tr>
<td>Neeper-Bradley (1989b)</td>
<td>Pregnant CD-1 mice (30/group)</td>
<td>6 h/d on GD 6-15</td>
<td>0, 914, 3,026, and 9,017 ppm</td>
<td>914 ppm</td>
<td>3,026 ppm</td>
<td>Slight maternal toxicity (color changes in the lungs at necropsy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,026 ppm</td>
<td>9,017 ppm</td>
<td>Slight developmental effect (increased incidence of poor ossification)</td>
</tr>
<tr>
<td>Daughtrey et al. (1992, 1994)</td>
<td>SD male and female rats (25/sex/group)</td>
<td>6 h/d, 5 d/week, over two generations</td>
<td>0, 900, 3,000, and 9,000 ppm (target concentrations)</td>
<td>9,000 ppm</td>
<td>---</td>
<td>No effects on reproduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,000 ppm</td>
<td>9,000 ppm</td>
<td>Reductions in body weight and body weight gain were observed in both F1 and F2 litters; and hyaline droplet nephropathy in adult F0 and F1 males</td>
</tr>
</tbody>
</table>

\(^a\) P< 0.05

\(^b\) Minimal LOAEL for developmental effect and used as POD. to derive 24-h ReV
In summary, the results of reproductive/developmental studies in animals are inconsistent. The NOAELs and LOAELs for developmental effects range from 200 to 9,017 and 1,000 to 9,017 ppm, respectively. As described in Section 3.2.3.1, the minimal LOAEL of 1,000 ppm for reduction in fetal body weight due to 20 h/d exposure over GD 6-19 was used as the POD to derive a 20-h ReV for developmental effects. The derived 20-h ReV can be used as a 24-h ReV for the evaluation of 24-h ambient air monitoring data (See Section 3.3)

The NOAELs and LOAELs for maternal toxicity from these studies range from 409 to 1,000 and 3,036 to 5,000 ppm, respectively.

3.2.4 Mode of Action (MOA) Analysis and Dose Metric

n-Hexane is metabolized in vivo to hydroxyl derivatives (2-hexanol, 2-hexanone, 2,5-hexanediol, 2-hydroxy-5-hexanone, and 2,5-hexanedione) via a cytochrome p450 oxidase system. 2,5-Hexanedione is believed to be the major toxic metabolite produced in humans (USEPA 2005). The 1- and 3-hexanol formed are conjugated with glucuronic acid or undergo further oxidation to hexanoic acid.

The MOA for neurotoxic effects is attributed to n-hexane’s neurotoxic metabolite, 2,5-hexanedione. The MOA for developmental/reproductive effects are also related to 2,5-hexadiene (Isobe et al. 1998, Cheng et al. 2012). Data on the exposure concentration of the parent chemical are available, whereas data on more specific dose metrics are not available. Thus, exposure concentration to the parent chemical will be used as the dose metric.

3.2.5 POD and Critical Effect

For n-hexane, the acute NOAEL of 1,000 ppm based on a 30-min inhalation mouse study (Glowa 1991) was used as the POD to develop the 1-h acute ReV. The critical effect was transient neuroendocrine effects.

3.2.6 Dosimetric Adjustments

3.2.6.1 Exposure Duration Adjustments

The POD of 1,000 ppm was adjusted from 30-min exposure to 60-min (1-h) exposure concentration using Haber’s rule as modified by ten Berge (1986) (TCEQ 2015a).

\[
\text{POD}_{\text{adj}} = C_2 = (C_1) \times \left(\frac{T_1}{T_2} \right) = (1,000 \text{ ppm}) \times \left(\frac{30 \text{ min}}{60 \text{ min}} \right) = 500 \text{ ppm}
\]

3.2.6.2 Default Dosimetry Adjustments from Animal-to-Human Exposure

n-Hexane is practically water insoluble. Acute exposures to hexane cause transient behavioral impairment and neurological function impairment, respectively, which are systemic effects. In
Hexane, All Isomers, proposed
Page 13

addition, toxicokinetic data indicate that n-hexane is rapidly absorbed via the lungs and widely
distributed within the body. n-Hexane was therefore considered a Category 3 gas (USEPA 1994).
For Category 3 gases, the default dosimetric adjustment from an animal concentration to a
POD_{HEC} is conducted using the following equation:

$$\text{POD}_{\text{HEC}} = \text{POD}_{\text{ADJ}} \times \left(\frac{H_{b/g}^A}{H_{b/g}^H} \right)$$

where: $H_{b/g}^A = \text{ratio of the blood:gas partition coefficient}$
$A = \text{animal}$
$H = \text{human}$

The measured blood/air partition coefficient in human ($(H_{b/g}^H)$) and in the rat ($(H_{b/g}^A)$ for n-
hexane are 0.8 and 1.72, which were reported by Meulenberg and Vijverberg (2000). The ratio of
the animal-to-human partition coefficients ($(H_{b/g}^A)/(H_{b/g}^H)$) is the regional gas dose ratio
(RGDR) (TCEQ 2015a). Because the ratio of the animal-to-human partition coefficients
(1.72/0.8 = 2.15) is greater than one, a default value of one is used as the regional gas dose ratio
as recommended by TCEQ (2015a). The resulting POD_{HEC} from the POD_{ADJ} of 500 ppm is 500
ppm for n-hexane.

3.2.7 Adjustments of the POD_{HEC}

The POD_{HEC} of 1,000 ppm for neuroendocrine effects was used to derive the 1-hour acute ReV
and acute ESL for n-hexane. The following uncertainty factors (UFs) were applied to the POD_{HEC}:
- A UF of 10 for human variability (UF_H),
- A UF of 3 to account for interspecies variability (UF_A),
- And a UF of 3 to account for database uncertainty (UF_D) for a total UF = 90:

- UF_H of 10 for intraspecies variability,
- UF_A of 3 for interspecies variability because a default dosimetric adjustment was conducted
to account for toxicokinetic differences between animals and humans but not toxicodynamic
differences,
- UF_D of 3 was used for uncertainty associated with an incomplete database. A higher UF_D
was not used because one human study was reported and several animal studies were
conducted for different toxicity endpoints including 2-generation
reproductive/developmental effects, and multiple animal species were used in inhalation
bioassays. Consistent with TCEQ (2015a), confidence in the database is considered
medium-high. The quality of the key rat study is medium to high.

$$\text{Acute ReV [1-h]} = \frac{\text{POD}_{\text{HEC}}}{(\text{UF}_H \times \text{UF}_A \times \text{UF}_D)}$$
$$= \frac{500 \text{ ppm}}{(10 \times 3 \times 3)}$$
$$= 5.5555 \text{ ppm}$$
$$= 5,500 \text{ ppb (rounded to two significant figures)$$
3.2.8 Health-Based 1-h Acute ReV and $^{\text{acute}}$ESL

In deriving the 1-h acute ReV, no numbers were rounded between equations until the ReV was calculated. Once the ReV was calculated, it was rounded to two significant figures. The rounded ReV was then used to calculate the ESL, and the ESL subsequently rounded. The $^{\text{acute}}$ESL of 1,600 ppb (5,600 µg/m3) for n-hexane is based on the acute ReV of 5,500 ppb (19,000 µg/m3) multiplied by a HQ of 0.3 and rounded to two significant figures at the end of all calculations (Table 6).

Table 6 Summary of 1-h Acute ReV and $^{\text{acute}}$ESL for n-Hexane

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values and Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study</td>
<td>Glowa (1991)</td>
</tr>
<tr>
<td>Study Quality</td>
<td>High</td>
</tr>
<tr>
<td>Study Population</td>
<td>Adult male CD-1 mice (4-6 mice/group)</td>
</tr>
<tr>
<td>Exposure Method</td>
<td>Incrementally increasing exposure inhalation from 100 ppm up to 10,000 ppm</td>
</tr>
<tr>
<td>Exposure Duration</td>
<td>30-min</td>
</tr>
<tr>
<td>Critical Effects</td>
<td>Neuroendocrine effects</td>
</tr>
<tr>
<td>POD (NOAEL)</td>
<td>1,000 ppm</td>
</tr>
<tr>
<td>POD$_{\text{ADJ}}$ to 1h</td>
<td>500 ppm</td>
</tr>
<tr>
<td>POD$_{\text{HEC}}$</td>
<td>500 ppm</td>
</tr>
<tr>
<td>Total UFs</td>
<td>90</td>
</tr>
<tr>
<td>$^{\text{Intraspecies UF}}$</td>
<td>10</td>
</tr>
<tr>
<td>$^{\text{Interspecies UF}}$</td>
<td>3</td>
</tr>
<tr>
<td>Extrapolation from LOAEL to NOAEL</td>
<td>Not available</td>
</tr>
<tr>
<td>$^{\text{Incomplete Database UF}}$</td>
<td>3</td>
</tr>
<tr>
<td>$^{\text{Database Confidence}}$</td>
<td>Medium</td>
</tr>
<tr>
<td>Acute ReV [1 h] (HQ = 1)</td>
<td>5,500 ppb (19,000 µg/m3)</td>
</tr>
<tr>
<td>$^{\text{acute}}$ESL [1 h] (HQ = 0.3)</td>
<td>1,600 ppb (5,600 µg/m3)</td>
</tr>
</tbody>
</table>

3.3 Health-Based Acute 24-Hour ReV

The minimal LOAEL of 1,000 ppm for decreased fetal body weight from the Mast et al. (1987) study was used as POD to derive the acute 24-h ReV (Section 3.2.3.1 and 3.2.3.7).
3.3.1 Dosimetric Adjustments

3.3.1.1 Exposure Duration Adjustments

The POD of 1,000 ppm was based on developmental effects conducted for 20 h/d during GD 6-19. No exposure duration adjustment was conducted, i.e., from a 20-h to a 24-h, for reproductive/developmental studies (TCEQ 2015a). Thus, the 20 h of the single day of exposure was used for 24-h ReV. The POD_{ADJ} resulting from the POD of 1,000 ppm is 1,000 ppm.

3.3.1.2 Default Dosimetry Adjustments from Animal-to-Human Exposure

As described in Section 3.2.6.2, because the ratio of the animal-to-human partition coefficients (1.72/0.8 = 2.15) is greater than one, a default value of one is used as the RGDR. The resulting 24-h POD_{HEC} from the 24-h POD_{ADJ} of 1,000 ppm is 1,000 ppm for n-hexane.

3.3.2 Adjustments of the POD_{HEC}

The POD_{HEC} of 1,000 ppm for developmental effect was used to derive the 24-hour acute ReV and acute ESL for n-hexane. The following UFs were applied to the POD_{HEC} (Total UF = 180):

- UF_{H} of 10 for intraspecies variability,
- UF_{A} of 3 for interspecies variability because a default dosimetric adjustment was conducted to account for toxicokinetic differences between animals and humans but not toxicodynamic differences,
- UF_{L} of 2 for extrapolation from a minimal LOAEL to NOAEL. A higher UF_{L} was not used because the reduction in fetal body weight (7%) was in males only and only marginally above 5%, and NOAELs identified from other similar studies for developmental endpoint are at or greater than the minimal LOAEL of 1,000 ppm (Table 5), and
- UF_{D} of 3 was used for uncertainty associated with an incomplete database. A higher UF_{D} was not used because several animal reproductive/developmental studies including 2-generation reproductive/developmental effects were conducted for different toxicity endpoints, and multiple animal species were used in inhalation bioassays. Consistent with TCEQ (2015a), confidence in the database is considered medium-high. The quality of the key rat study is medium to high.

\[
\text{Acute ReV [24-h]} = \frac{\text{POD}_{\text{HEC}}}{(\text{UF}_{\text{H}} \times \text{UF}_{\text{A}} \times \text{UF}_{\text{L}} \times \text{UF}_{\text{D}})}
\]

\[
= \frac{1,000 \ \text{ppm}}{(10 \times 3 \times 2 \times 3)}
\]

\[
= 5,5555 \ \text{ppm}
\]

\[
= 5,500 \ \text{ppb (19,000 µg/m}^3) \text{ (rounded to two significant figures)}
\]

3.3.3 Health-Based 24-h Acute ReV

In deriving the 24-h acute ReV, no numbers were rounded between equations until the ReV was calculated. Once the ReV was calculated, it was rounded to two significant figures. The 24-h acute ReV is 5,500 ppb (19,000 µg/m^3) (Table 7).
Table 7. Summary of 24-h Acute ReV

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values and Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study</td>
<td>Mast et al. 1987</td>
</tr>
<tr>
<td>Study Quality</td>
<td>Medium to high</td>
</tr>
<tr>
<td>Study Population</td>
<td>pregnant Sprague-Dawley (SD) rats (30/group)</td>
</tr>
<tr>
<td>Exposure Method</td>
<td>0, 200, 1,000, or 5,000 ppm n-hexane by inhalation</td>
</tr>
<tr>
<td>Exposure Duration</td>
<td>20 h/d over gestation (GD) 6-19 for rats</td>
</tr>
<tr>
<td>Critical Effects</td>
<td>decreased fetal body weights</td>
</tr>
<tr>
<td>POD</td>
<td>1,000 ppm (minimal LOAEL)</td>
</tr>
<tr>
<td>POD_{ADJ} to 24h</td>
<td>1,000 ppm</td>
</tr>
<tr>
<td>POD_{HEC}</td>
<td>1,000 ppm</td>
</tr>
<tr>
<td>Total UFs</td>
<td>180</td>
</tr>
<tr>
<td>Intraspecies UF</td>
<td>10</td>
</tr>
<tr>
<td>Interspecies UF</td>
<td>3</td>
</tr>
<tr>
<td>Extrapolation from LOAEL to NOAEL</td>
<td>2</td>
</tr>
<tr>
<td>Incomplete Database UF</td>
<td>3</td>
</tr>
<tr>
<td>Database Confidence</td>
<td>High</td>
</tr>
<tr>
<td>Acute ReV [24 h] (HQ = 1)</td>
<td>5,500 ppb (19,000 µg/m³)</td>
</tr>
</tbody>
</table>

3.4 Welfare-Based Acute ESLs

3.4.1 Odor Perception

Hexane is a colorless liquid that has an associated gasoline-like odor. A 50% odor detection threshold value of 5,300 µg/m³ (1,500 ppb) was reported for hexane by Nagata (2003) utilizing the triangular odor bag method. Since hexane does not have a pungent or disagreeable odor, an acuteESL_{odor} was not developed (TCEQ 2015b).

3.4.2 Vegetation Effects

Haagen-Smit et al (1952) conducted a screening study on the effects of hexane on spinach (Spinacia oleracea), endive (Cichorium endivia), beets (Beta vulgaris), oats (Avena sativa), and alfalfa (Medicago sativa). Fumigations in this study were conducted in a small glass chamber with a 353 L capacity at concentrations of 25 ppm or greater for minimum exposure duration of
5 h. No damage was observed as a result of exposure to hexane at 25 ppm, which was designated as a NOAEL. According to the ESL guidelines (TCEQ 2015a), TCEQ determined an acute-vegetation ESL of 25 ppm as a threshold concentration from the study. However, as the reported vegetative effects were significantly above other health- and odor-based concentrations and the study was of insufficient quality, an acuteESLveg was not developed for hexane.

3.5 Short-Term ESLs and Values for Air Monitoring Data Evaluations

3.5.1 n-Hexane

The acute evaluation resulted in the derivation of the following values for n-hexane:

- Acute ReV [1-h] = 19,000 µg/m³ (5,500 ppb)
- Acute ReV [24-h] = 19,000 µg/m³ (5,500 ppb)
- acuteESL = 5,600 µg/m³ (1,600 ppb)

For the evaluation of ambient air monitoring data, the level of 5,500 ppb (19,000 µg/m³) are used for both 1-h and 24-h ReV (Table 1). The short-term ESL for air permit reviews is the health-based acuteESL of 5,600 µg/m³ (1,600 ppb) (Table 2). The acuteESL (HQ = 0.3) is not used to evaluate ambient air monitoring data.

3.5.2 Other hexane Isomers

No acute toxicity data were available describing the potential acute toxicity of other hexane isomers. For the purpose of health effects evaluations for ambient air monitoring data, the acute 1-h and 24-h ReV value of 19,000 µg/m³ (5,500 ppb) for n-hexane will be used as surrogates. For the purpose of health effects evaluations for air permit applications, the acuteESL of 5,600 µg/m³ (1,600 ppb), as n-hexane, will be used.

3.6 Acute Inhalation Observed Adverse Effect Levels (IOAELs)

The acute inhalation observed adverse effect level (acuteIOAEL) of 1,000 ppm for n-hexane was based on the 20-h LOAEL of 1,000 ppm for developmental effects from the rat study (Mast et al. 1987). No duration adjustments were made although default animal-to-human dosimetric adjustments were performed. Effects occurred in some animals and the acuteIOAEL represent a concentration at which it is possible that similar effects could occur in some individuals exposed to this level over the same duration as used in the study or longer. Importantly, effects are not a certainty due to potential interspecies and intraspecies differences in sensitivity. The acuteIOAEL level is provided for informational purposes only (TCEQ 2015a). The acuteIOAEL for n-hexane is:

n-Hexane acuteIOAEL = 3,500 mg/m³ (1,000 ppm) (rounded to 2 significant figures)
The margin of exposure between the acute IOAEL (1,000 ppm) and the acute ReV (5.5 ppm) for n-hexane is a factor of ~180.

Chapter 4 Chronic Evaluation

4.1 Physical/Chemical Properties

For physical/chemical properties, refer to Section 3.1 and Table 3.

4.2 Health-Based Toxicity Factors

There is not sufficient data to link exposure of hexane to a carcinogenic endpoint. In addition, inconclusive data exists regarding the exact nature of the dose-response relationship associated with hexane and its toxic endpoints in regards to the dose-response relationship. Therefore, hexane is classified as a noncarcinogen and the default nonlinear approach was used.

4.2.1 Key Studies

Based on reports from both human and animal studies, the most sensitive toxic endpoint resulting from n-hexane exposure is peripheral neuropathy, which is a condition characterized by loss of sensation and muscular control (Yamada S. 1967, Yamamura Y. 1969, Schaumberg and Spencer 1976, Seppalainen et al. 1979, Sanagi et al. 1980, Dunnick et al. 1989, Huang et al. 1989, Daughtrey et al. 1999). The human occupational inhalation study by Chang et al. (1993) and the rodent inhalation study by Miyagaki (1967) were selected as the key studies. Both studies were well-conducted and hexane-induced peripheral neuropathy was the toxic-endpoint of interest in each study. Both were chosen as the key chronic studies.

4.2.1.1 Chang et al (1993) Human Study

In the Chang et al (1993) study, symptomatic peripheral neuropathy was reported in 20 of 56 workers (36% of workers) in an offset printing factory and another 26 workers (approximately 46%) were asymptomatic but had evidence of subclinical neuropathy. Other reported effects included reductions in both sensory and action potentials, decreases in motor nerve conduction velocity and increased distal latency. In one severe case, a sural nerve biopsy revealed giant axonal swellings with accumulation of 10 nm neurofilaments, myelin sheath attenuation, and widening of nodal gaps. Optic neuropathy and CNS impairment were not common among the 56 workers evaluated in this study. Personal air samples were used to determine a range of exposure concentrations of 80 to 210 ppm (mean = 132 ppm) hexane, and 20-680 ppm (mean = 235 ppm) isopropanol and 20-84 ppm (mean = 50 ppm) toluene. At this particular factory, the workers worked 12 h/d, 6 d/week, and the mean duration of employment was 2.6 years, with a range of 1 month to 30 years. The range of employment duration provided sufficient exposure durations to classify the Chang et al. (1993) study as a chronic study. The mean hexane exposure concentration of 132 ppm determined in this study was designated as a lowest-observed-adverse-effect-level (LOAEL). The LOAEL was used as the POD to derive chronic ReV and ESL.
4.2.1.2 Miyagaki (1967) Animal Study

In the Miyagaki (1967) study, 6 groups of 10 male SM-A mice, a transgenic strain of mice, were housed in a gas-chamber and were exposed to 0, 100, 250, 500, 1,000, or 2,000 ppm commercial grade hexane (65-70% n-hexane and 30-35% other hexane isomers) for 24 h/d, 6 d/week for one year. It was determined that animals exposed to 250 ppm of hexane or higher for one year exhibited symptoms of peripheral neuropathy, such as abnormal posture, muscular atrophy, and various endpoints resulting from electrophysiological tests assessed nerve conductivity and muscle responses in mice. Based on the findings of this study by Miyagaki (1967), the 100 ppm treatment group showed no signs of physical impairment; therefore, this was designated as the NOAEL for this study. The level of 250 ppm was designated as the LOAEL. The NOAEL was also used as the POD to derive chronic ReV and ESL.

4.2.2 Supporting Studies

There are quite a few chronic inhalation studies of n-hexane conducted in both humans and animals (USEPA 2005). Some relevant studies cited by USEPA (2005) are summarized below (Table 8).
Table 8 Summary of Supporting Subchronic/Chronic Inhalation Studies of n-Hexane

<table>
<thead>
<tr>
<th>Study</th>
<th>Species</th>
<th>Exposure Duration</th>
<th>Exposure Concentration</th>
<th>NOAEL</th>
<th>LOAEL</th>
<th>Response at LOAEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanagi et al. (1980)</td>
<td>Male workers (14/group)</td>
<td>8 h/d, 5 d/week, for 1-12 years (average of 6.2 years)</td>
<td>Control, or 58 ppm for n-hexane and 39 ppm for acetone (8-h TWA)</td>
<td>58 ppm</td>
<td>---</td>
<td>Absence of peripheral neuropathy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58 ppm</td>
<td>Statistically significant increased incidence of subject-reported symptoms, neurological tests, and neurophysiological findings</td>
</tr>
<tr>
<td>Dunnick et al. (1989)</td>
<td>B6C3F1 mice (10/sex/group)</td>
<td>6 h/d, 5 d/week for 13 weeks</td>
<td>0, 500, 1,000, 4,000, or 10,000 ppm</td>
<td>4,000 ppm</td>
<td>10,000 ppm</td>
<td>Reduction in locomotor activity in females. Increased incidence of paranodal axonal swelling</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22 h/d, 5 d/week for 13 weeks</td>
<td>1,000 ppm</td>
<td>---</td>
<td>Reduction in locomotor activity. Increased incidence of paranodal axonal swelling</td>
</tr>
<tr>
<td>Ono et al. (1982)</td>
<td>Male Wistar rats (8/group)</td>
<td>12 h/d, 7 d/week for 24 weeks</td>
<td>0, 200, or 500 ppm</td>
<td>---</td>
<td>200 ppm</td>
<td>Statistically significant decreased in motor nerve conduction velocity (MCV), and degeneration of the myelinated axons</td>
</tr>
<tr>
<td>Huang et al. (1989)</td>
<td>Male Wistar rats (8/group)</td>
<td>6 h/d, 5 d/week for 13 weeks</td>
<td>0, 500, 1,200, or 3,000 ppm</td>
<td>500 ppm</td>
<td>1,200 ppm</td>
<td>Statistically significant reduction in body weight gain, reduction in MCV. Neurophysiologic deficits and histopathologic effects were observed</td>
</tr>
<tr>
<td>Daughtrey et al. (1999)</td>
<td>F344 rats and B6C3F1 (50/sex/group)</td>
<td>6 h/d, 5 d/week for 2 years</td>
<td>0, 900, 3,000, or 9,000 ppm commercial hexane</td>
<td>---</td>
<td>900 ppm</td>
<td>Histopathological lesions of the respiratory tract and squamous metaplasia or hyperplasia of the columnar epithelium. Statistically significant increase incidence of pituitary adenomas in exposed female mice</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,000 ppm</td>
<td>Statistically significant increase in the incidence of hepatocellular neoplasms in the liver of exposed female mice</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9,000 ppm</td>
<td></td>
</tr>
</tbody>
</table>
4.2.3 Mode-of-Action (MOA) Analysis and Dose Metric

The metabolism of hexane is described in Section 3.2.4. The MOA for neurotoxic effects is attributed to n-hexane’s neurotoxic metabolite, 2,5-hexanedione.

Data on exposure concentration of the parent chemical is available in both the Chang et al. (1993) study and the Miyagaki (1967) study, whereas data on more specific dose metrics are not available. Thus, exposure concentration of the parent chemical will be used as the default dose metric.

4.2.4 Critical Effect and POD

In order to determine the critical effect amongst multiple endpoint PODs, POD\textsubscript{HEC}s for the LOAELs from both the Chang et al. (1993) human study and the Miyagaki (1967) mouse study were determined. The lower LOAEL-based POD\textsubscript{HEC} determines the critical effect for derivation of the chronic ReV and ESL (TCEQ 2015a). The chronic LOAEL is 132 ppm for the Chang et al. (1993) study and 250 ppm for the Miyagaki (1967) study. After dosimetric adjustments, the POD\textsubscript{HEC}s for the LOAELs from the Chang et al. (1993) and Miyagaki (1967) studies were 57 and 250 ppm, respectively. Therefore, peripheral neuropathy is the chronic critical effect and the LOAEL of 132 ppm identified from the Chang et al. (1993) key study was used as the POD to derive chronic ReV and chronic ESL\textsubscript{nonlinear(nc)}. The details of determination of the POD\textsubscript{HEC}s for the LOAELs are described in Appendix A.

4.2.5 Dosimetric Adjustments

4.2.5.1 Exposure Duration Adjustments

The occupational POD (POD\textsubscript{OC}) from the Chang et al. (1993) study was adjusted to a POD that is representative of a human equivalent concentration applicable to the general population (POD\textsubscript{ADJ}) according to section of 4.2.1 of the ESL guidelines (TCEQ 2006) by using the following dosimetric adjustment formula:

\[\text{POD}_{\text{ADJ}} = \text{POD}_{\text{OC}} \times \left(\frac{\text{VE}_{\text{ho}}}{\text{VE}_{\text{h}}} \right) \times \left(\frac{\text{days per week}_{\text{oc}}}{\text{days per week}_{\text{res}}} \right) \]

where: \(\text{VE}_{\text{ho}} \) = occupational ventilation rate for an 8-h day (10 m\(^3\)/d)

\(\text{VE}_{\text{h}} \) = non-occupational ventilation rate for a 24-h day (20 m\(^3\)/d)

\(\text{days per week}_{\text{oc}} \) = occupational weekly exposure frequency (study specific)

\(\text{days per week}_{\text{res}} \) = residential weekly exposure frequency (7 d/ week)

In the formula listed above, the default occupational ventilation rate of 10 m\(^3\)/d was determined for an 8-h workday and the workers in the Chang et al. (1993) study worked 12 h/d. However, based on scientific judgment, use of the default ventilation rate based on an 8-h workday was considered conservative for use in the derivation of POD\textsubscript{HEC}.
4.2.6 Adjustments of the POD_{HEC}

The POD_{HEC} of 57 ppm for peripheral neuropathy was used to derive the chronic ReV and $\text{chronic ESL}_{\text{nonlinear(nc)}}$ for n-hexane. The following UFs were applied to the POD_{HEC} (Total UF = 300):

- a UF$_H$ of 10 for intraspecies variability,
- a UF$_L$ of 10 for extrapolation from a free-standing LOAEL to NOAEL, and
- a UF$_D$ of 3 was used for uncertainty associated with an incomplete database. There are multiple human and animal studies and several animal studies were conducted for different toxicity endpoints including 2-generation reproductive/developmental effects, and multiple animal species were used in inhalation bioassays. As described by USEPA (2005), a lower UF$_D$ of 1 was not used because the lack of multigeneration reproductive and developmental studies following exposure to pure n-hexane and the uncertainty associated with low-dose developmental effects of exposure to n-hexane. Consistent with TCEQ (2015a), confidence in the database is considered medium to high. The quality of the key human study is high.

$$\text{Chronic ReV} = \frac{\text{POD}_{\text{HEC}}}{(\text{UF}_H \times \text{UF}_L \times \text{UF}_D)}$$

$$= \frac{57 \text{ ppm}}{(10 \times 10 \times 3)} = 0.19 \text{ ppm}$$

$$= 190 \text{ ppb or } 670 \mu g/m^3 \text{ (rounded to two significant figures)}$$

4.2.7 Health-Based Chronic ReV and $\text{chronic ESL}_{\text{nonlinear(nc)}}$

The $\text{chronic ESL}_{\text{nonlinear(nc)}}$ of 57 ppb (200 µg/m³) for n-hexane is based on the chronic ReV of 190 ppb (670 µg/m³) multiplied by a HQ of 0.3 and rounded to two significant figures at the end of all calculations (Table 9).
Hexane, All Isomers, proposed
Page 23

Table 9 Derivation of the Chronic ReV and chronic\text{ESL}_\text{nonlinear(nc)}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values and Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study</td>
<td>Chang et al. (1993)</td>
</tr>
<tr>
<td>Study Population</td>
<td>56 workers from an offset printing factory</td>
</tr>
<tr>
<td>Study Quality</td>
<td>High</td>
</tr>
<tr>
<td>Exposure Method</td>
<td>Inhalation</td>
</tr>
<tr>
<td>Critical Effects</td>
<td>Peripheral neuropathy</td>
</tr>
<tr>
<td>POD$_{oc}$</td>
<td>132 ppm (LOAEL)</td>
</tr>
<tr>
<td>Exposure Duration</td>
<td>12 h/d, 6 d/week, 2.6 years (mean)</td>
</tr>
<tr>
<td>POD$_{HEC}$</td>
<td>57 ppm</td>
</tr>
<tr>
<td>Total UFs</td>
<td>300</td>
</tr>
<tr>
<td>Interspecies UF</td>
<td>NA</td>
</tr>
<tr>
<td>Intraspecies UF</td>
<td>10</td>
</tr>
<tr>
<td>LOAEL UF</td>
<td>10</td>
</tr>
<tr>
<td>Incomplete Database UF</td>
<td>3</td>
</tr>
<tr>
<td>Database Quality</td>
<td>Medium to high</td>
</tr>
<tr>
<td>Chronic ReV (HQ = 1)</td>
<td>670 µg/m³ (190 ppb)</td>
</tr>
<tr>
<td>chronic\text{ESL}_\text{nonlinear(nc)} (HQ = 0.3)</td>
<td>200 µg/m³ (57 ppb)</td>
</tr>
</tbody>
</table>

4.3 Carcinogenic Potential

There is only one inhalation study available on the carcinogenic effects of hexane in animals. Daughtrey et al. (1999) reported findings from a 2-year carcinogenicity studies with commercial hexane in F344 rats and B6C3F1 mice. In this study, fifty animals/sex/group/species were exposed to a commercial hexane preparation at targeted concentrations of 0, 900, 3,000, or 9,000 ppm (target concentrations), 6 h/d, 5 d/week for 2 years. The commercial hexane consisted of 51.5% n-hexane, 16% methylcyclopentane, 16.1% 3-methylpentane, 12.9% 2-methylpentane, 3.3% cyclohexane, and trace amounts of other hydrocarbons. There was no n-hexane-related tumor formation at any tissue site in F344 rats. There was a statistically significant, dose-related increase in the incidence of hepatocellular neoplasms in the livers of female mice exposed to 9,000 ppm compared with controls. There was also an increased incidence of pituitary adenomas in female mice exposed to 900 ppm or higher. However, the USEPA indicated that the increased tumor incidence was of borderline statistical significance and was not present in treated male mice or in either sex of F344 rats exposed to commercial hexane under the same conditions. Based on a lack of data concerning carcinogenicity in humans and animals, the USEPA has classified hexane as a Group D, not classifiable as to human carcinogenicity (USEPA 2005).
There is insufficient data to establish an effect on vegetation as a result of chronic exposure to hexane.

4.5 Long-Term ESL and Values for Air Monitoring Data Evaluations

4.5.1 n-Hexane

The chronic evaluation resulted in the derivation of the following chronic values:

- \(\text{chronic ReV} = 670 \, \mu g/m^3 (190 \, \text{ppb}) \)
- \(\text{chronic ESL}_{\text{nonlinear(nc)}} = 200 \, \mu g/m^3 (57 \, \text{ppb}) \)

The long-term ESL for air permit evaluations is \(200 \, \mu g/m^3 (57 \, \text{ppb}) \) (Table 1). The chronic ReV of \(670 \, \mu g/m^3 (190 \, \text{ppb}) \) is used for evaluation of monitoring data (Table 1). The \(\text{chronic ESL}_{\text{nonlinear(nc)}} \) (HQ = 0.3) is not used to evaluate ambient air monitoring data.

4.5.2 Other hexane Isomers

No subchronic/chronic toxicity data were available describing the potential chronic toxicity of other hexane isomers. The critical effect for chronic exposure to n-hexane is peripheral neuropathy and the metabolite of n-hexane (2,5-hexanedione) is responsible for the unique neurotoxic properties of n-hexane. It is not certain that other hexane isomers can be potential neuropathic hexane. ACGIH (2001) indicates that it seems unlikely that all the hexanes would follow the same metabolic route in the body as n-hexane, in view of the marked variations in structure of the molecule. The TCEQ conservatively considers all hexane isomers are potential neuropathic alkanes. For the purpose of health effects evaluations for ambient air monitoring data, the chronic ReV value of \(670 \, \mu g/m^3 (190 \, \text{ppb}) \) for n-hexane will be used as a surrogate. For the purpose of health effects evaluations for air permit applications, the \(\text{chronic ESL} \) of \(200 \, \mu g/m^3 (57 \, \text{ppb}) \), as n-hexane, will be used.

4.6 Chronic Inhalation Observed Adverse Effect Levels (IOAELs)

The chronic inhalation observed adverse effect level (\(\text{chronic IOAEL} \)) of 130 ppm for n-hexane was based on the LOAEL of 132 ppm for peripheral neuropathy observed from the human study (Chang et al. 1993). No exposure duration was adjusted. Effects occurred in some workers and the \(\text{chronic IOAEL} \) represent a concentration at which it is possible that similar effects could occur in some individuals exposed to this level over the same duration as used in the study or longer. Importantly, effects are not a certainty due to potential intraspecies differences in sensitivity. The \(\text{chronic IOAEL} \) level is provided for informational purposes only (TCEQ 2015a). The \(\text{chronic IOAEL} \) for n-hexane is:

\[
\text{n-Hexane} \, \text{chronic IOAEL} = 130 \, \text{ppm} (460 \, \text{mg/m}^3) \text{ (rounded to 2 significant figures)}
\]
The margin of exposure between the chronic IOAEL (130 ppm) and the chronic ReV (0.19 ppm) for n-hexane is a factor of ~684.

Chapter 5 References

5.1 References Cited in DSD

Hexane, All Isomers, proposed

Hexane, All Isomers, proposed
Page 27

Texas Commission on Environmental Quality (TCEQ). 2015b. Approaches to Derive Odor-Based Values. TCEQ, Austin, TX.

5.2 References of Other Studies Reviewed by the TD

Hexane, All Isomers, proposed
Page 29

Zhao, WY, J Misumi, T Yasui, et al. 1998. Effects of methyl ethyl ketone, acetone, or toluene coadministration on 2,5-hexanedione concentration in the sciatic nerve, serum, and urine of rats. *Int Arch Occup Environ Health* 71:236-244.
Appendix Determination of Chronic POD_{HEC}s for LOAELs

A.1 POD for LOAEL from the Chang et al. (1993) Study

A.1.1 Exposure Duration Adjustments

The occupational POD (POD_{oc}) of 132 ppm for LOAEL was adjusted to a POD that is representative of a human equivalent concentration applicable to the general population (POD_{HEC}).

\[
POD_{HEC} = POD_{OC} \times \left(\frac{VE_{ho}}{VE_{h}}\right) \times \left(\frac{\text{days per week}_{oc}}{\text{days per week}_{res}}\right)
\]

where: VE_{ho} = occupational ventilation rate for an eight-hr day (10 m^3/day)
VE_{h} = non-occupational ventilation rate for a 24-hr day (20 m^3/day)
\text{days per week}_{oc} = occupational weekly exposure frequency (study specific)
\text{days per week}_{res} = residential weekly exposure frequency (7 days per week)

In the formula listed above, the default occupational ventilation rate of 10 m^3/d was determined for an 8-h workday and the workers in the Chang et al. (1993) study worked 12 h/d. However, based on scientific judgment, use of the default ventilation rate based on an 8-h workday was considered conservative for use in the derivation of POD_{HEC}.

\[
POD_{HEC} = 132 \text{ ppm} \times \left(\frac{10}{20}\right) \times \left(\frac{6}{7}\right) = 57 \text{ ppm}
\]

A.2 POD for LOAEL from the Miyagaki (1967) Study

A.2.1 Exposure Duration Adjustments

The POD of 250 ppm (LOAEL) was conducted for 24 h/d, 6 d/week for one year. No exposure duration adjustment was conducted. Thus, the POD_{ADJ} from the 24-h POD is 250 ppm.

A.2.2 Default Dosimetry Adjustments from Animal-to-Human Exposure

As described in Section 3.2.6.2 of this DSD, because the ratio of the animal-to-human partition coefficients (1.72/0.8 = 2.15) is greater than one, a default value of one is used as the RGDR. The resulting POD_{HEC} for the LOAEL-based from the POD_{ADJ} of 250 ppm is 250 ppm for n-hexane.